The legacy of Chernobyl Health Effects European Parliament April 7, 2016

Dr Ian Fairlie Consultant on Radiation in the Environment London United Kingdom

Chernobyl Accident (1986)

"...the foremost nuclear catastrophe in human history" IAEA (1996)

"...its magnitude and scope, the size of the affected populations, and its long-term consequences make it, by far, the worst industrial disaster on record" IAEA/WHO (2005)

People exposed to Chernobyl's fallout

the and the second states of the states	Number
Clean-up workers	530,000
Evacuees	131,000
In high contaminated areas of Belarus, Russia, Ukraine	6.4 million
In low contaminated areas of Belarus, Russia Ukraine	98 million
In Western Europe	500 million
Total	>600 million

Estimated Fatal Cancers (all Europe)

	Year	Deaths
IAEA/WHO	2005	9,000
TORCH (2006)	2006	30,000 - 60,000
Cardis et al	2015	16,000 (6,700 to 38,000)
TORCH (2016)*	2016	40,000

*from UNSCEAR 2008

Observed health effects

thyroid cancers Ieukemias and solid cancers cardiovascular diseases/strokes birth defects Ill health among children

Thyroid Cancer

Age standardized incidence rates of thyroid cancer (World standard per 100 000)

How large are thyroid cancer risks?

700% increase over background rate
extraordinarily high, perhaps the largest increases in risk ever measured after exposures to toxic substances
in Ukraine and Belarus, probably Russia

Iodine-131 in Austria

Abbildung 4: Verteilung der gemessenen kumulativen ¹³¹I Aktivitätskonzentrationen (part.) in der Luft über Österreich (1986), Zellengröße: 50 × 50 km

Thyroid cancer - other countries

Czech Republic: Murbeth et al (2004) TC incidence increased by 2.6% per y (95%-CI: 1.2-4.1) after 1990 North England: Cotterill et al (2001) – incidence in children/young adults, (1987-97)/(1968-1986) = 2.3East Slovakia: Icso et al (1998) found TC incidence was 1.3x higher in 10 yr period after Francethan before Poland: Roszkowska and Goryński (2004) observed substantial increases in TC incidence after 1991 **France**: Verger et al (2003) reported TC incidence increased x 5.2 in men and 2.7 in women, 1975 to 1995

Thyroid Cancer in Czech Republic

source: http://www.svod.cz/analyse.php?modul=incmor#

How many excess thyroid cancers will occur?

So far >6,000 cases (UNSCEAR, 2008)

>16,000 cases in Belarus alone (Cardis, 2015) estimate

Leukemia

Leukemia in Europe

Russian workers (500% increase /Gy)

Ukrainian workers (240% increase /Gy)

Also seen in Finland, Slovakia, Germany, Greece and Italy

Solid Cancers

cancer incidence (for ages 20-85 per 100,000 population) in Belarus liquidators 1997-2000, compared with control adults in least contaminated area (Vitebsk)

Cancer	Incidence in controls	Incidence liquidators	increase
All sites	373.3	464.6	23%
Bladder	11.4	18.7	65%
Colon	16.7	22.2	33%
Lung	52.6	66.3	26%
Kidney	15.4	19.1	24%
Stomach	40.8	46.9	15%

source: Okeanov et al (2014)

Cardiovascular Disease (LSS)

Birth Defects

Major study on birth defects 150,000 births, 10 years (Timchenko et al, 2014)				
Frequency per 1000 live births	polluted areas	clean areas	% increase	
all birth defects	26.10	24.23	7.7%	
nervous system birth defects	1.09	0.75	45%	

Down Syndrome

Scotland (Ramsay et al, 1991) Southern Germany (Sperling et al, 1991) Finland (Harjulehto-Mervaala et al, 1992)* Hungary (Czeizel *et al*, 1993)* Sweden (Ericson and Kallen, 1994) Berlin (Sperling *et al*, 1994, 1994b) England (Bound et al, 1995) Belarus (Zatsepin *et al*, 2007) (26 obs: 9.84 exp; O/E = 2.64; CI = 1.72-3.76)

Persistent ill health in children

Persistent ill health in children

impaired lung function, increased breathing difficulties Svendsen *et al* (2010, 2015)

decreased blood counts Stepanova *et al* (2008) Lindgren *et al* (2015)

increased immunoglobulin factors Titov *et al* (1995), McMahon *et al* (2014)

increased anaemias and colds McMahon *et al* (2015) improvement with clean food McMahon *et al* (2015)

Chernobyl in a nutshell

5 million people in still live in highly contaminated areas

- 500 million people in less contaminated areas
- 42% of western Europe also contaminated
- half of Chernobyl's fallout deposited on W Europe
- 40,000 fatal cancers predicted
- 6,000 thyroid cancer cases, thousands more expected
- possible increased thyroid cancers in Austria and other western European countries
- increased radiogenic leukemia, cardio-vascular disease, breast cancers confirmed
- radiogenic birth defects, mental health effects
- children in contaminated areas suffer radiogenic illnesses

Chernobyl and Fukushima

Second States	Chernobyl	Fukushima	Factor x
Area contam > 10	1,437,000 sq km**	30,000 sq km^	~50
kBq/m² Cs-137	1 Alter and a los		the first
Percent of country	37% of Europe**	8% of Japan^	See line
Cs-137 source term	85 PBq+	12 PBq*	~7
I-131 source term	1760 PBq*	150 PBq*	~12
Collective dose	400,000* person Sv	48,000* person Sv	~8
Collective dose to	2,240,000**	112,000*	~20
thyroid	person-Gy	person-Gy	1 that
No. living in most	6,400,000+	~1,000,000	~6
contam areas	THE PART AND	a share a start as	
Clean-up workers	530,000+	~16,000	~30
Economic costs	?	\$300 - \$500 billion	

sources * UNSCEAR 2013; **TORCH 2016; ⁺UNSCEAR 2008; ^ Japanese Science Ministry

Chernobyl: conclusions

 nuclear power is a supremely unforgiving technology terrible consequences millions still in contaminated areas health effects still occurring need for more research in Europe need for more humanity towards affected peoples, esp children

Chernobyl Children Projects 🗸

the future....

Price of a solar panel per watt

Global solar panel installations

Good References

•Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubing JH, Preston DL, Preston JR, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB and Zaider M (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. (2003) PNAS Nov 25, 2003, vol. 100 no. 24 13761–13766 •Cardis E (2005) Cancer effects of the Chernobyl accident (presentation at IAEA/WHO Conference 'Environmental and Health Consequences of the Chernobyl Accident')

•CERRIE (2004) Report of the Committee Examining Radiation Risks of Internal Emitters London, October 2004 <u>www.cerrie.org</u> (accessed February 12, 2006) •Day R, Gorin MB and Eller AW (1995) Prevalence of lens changes in Ukrainian children residing around Chernobyl Health Physics 68 632-42

•Dubrova YE, Grant G, Chumak AA, Stezhka VA, Karakasian AN (2002) Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine. Am J Human Genet 71:801-809

•Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL and Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380 683-686

•Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Vergnaud G, Giraudeau, Buard J and Jeffreys AJ (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat. Res. 381, 267-278

•European Commission (1998) Atlas of Caesium Deposition on Europe after the Chernobyl Accident. European Commission. EUR 19810 EN RU. Brussels •Goossens LHJ, Harper FT, Harrison JD, Hora SC, Kraan BCP, Cooke RM (1998) Probabilistic Accident Consequence Uncertainty Analysis: Uncertainty Assessment for Internal Dosimetry: Main Report. Prepared for U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, USA. And for Commission of the European Communities, DG XII and XI, B-I049 Brussels Belgium. NUREG/CR-6571 EUR 16773.

•IAEA/WHO (2005a) Health Effects of the Chernobyl Accident and Special Health Care Programmes. Report of the UN Chernobyl Forum Expert Group "Health" (EGH) Working draft. July 26 2005

•IAEA/WHO (2005b) Environmental Consequences of the Chernobyl Accident and their Remediation. Report of the UN Chernobyl Forum Expert Group "Environment" (EGE) Working draft. August 2005

•IAEA/WHO/EC (1996) One Decade After Chernobyl: Summing up the Consequences of the Accident.

•Ivanov VK *et al* (2000) Radiation-epidemiology analysis of incidence of non-cancer diseases among the Chernobyl liquidators. Health Physics 78, 495-501 •Ivanov VK, Tsyb AF, Gorsky AI, *et al* (1997) Thyroid cancer among "liquidators" of the Chernobyl accident. Br J Radiol 70: 937-41

•Jacob P, Meckbach R, Ulanovski A, Schotola C and Pröhl G (2005) Thyroid exposure of Belarusian and Ukrainian children due to the Chernobyl accident and resulting thyroid cancer risk. GSF-Bericht 01/05, Neuherberg: GSF-Forschungszentrum mbH, 72S.; mit Anhang

•Meara J (2002) Getting the Message Across: Is Communicating the Risk Worth it? J of Radiation Protection Vol 22 pp 79-85

Okeanov AE, Sosnovskaya EY, Priatkina OP (2004) A national cancer registry to assess trends after the Chernobyl accident. Swiss Med Wkly 134:645-9
Preston DL, Shimuzu Y, Pierce DA, Suyama A and Mabuchhi K (2003) Studies of mortality of Atomic Bomb survivors. Report 13: Solid Cancer and Non-cancer Disease Mortality: 1950-1997 Radiation Research 160, 381-407

•Pukkala E, Poliakov S, Ryzhov A, Kesminiene A, Drozdovich V, Kovgan L, Kyyrönen P, Malakhova I V, Gulak L and Cardis E Breast cancer in Belarus and Ukraine after the Chernobyl Accident. (2006) International Journal of Cancer, in press

•Robb JD (1994) Estimates of Radiation Detriment in a UK Population. NRPB Report R-260 National Radiological Protection Board, Chilton, Oxon •Thorne MC (2003) Background radiation: natural and man-made. J Radiol Prot vol 23(1) pp 29-42

•UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with Scientific Annexes. (New York:UN) Annex B

•US DoE (1987) Report of Interlaboratory Task Group. Health and Environmental Consequences of the Chernobyl Nuclear Power Plant Accident. US Department of Energy DOE/ER-0332 NTIS Springfield VA 22161

•WHO/IPHECA (1995) Health Consequences of the Chernobyl Accident, Results of the International Programme on the Health Effects of the Chernobyl Accident (IPHECA). Summary Report. World Health Organisation.